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Sources for Parameter Estimates
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Introduction of Parameter Estimates
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Sensitivity Analyses

e Same relative or absolute uncertainty in

different parameters may have hugely

different effect on outcomes or decisions

* Help identify parameters that strongly affect
— Key model results

— Choice between policies

* We place more emphasis in parameter
estimation into parameters exhibiting high
sensitivity



Dealing with Data Gradients

e Often we don’t have reliable information on some
parameters, but do have other data

— Some parameters may not be observable, but some
closely related observable data is available

— Sometimes the data doesn’t have the detailed

breakdown needed to specifically address one
parameter

* Available data could specify sum of a bunch of flows or stocks

* Available data could specify some function of several
quantities in the model (e.g. prevalence)

 Some parameters may implicitly capture a large set
of factors not explicitly represented in model

* There are two big ways of dealing with this:
manually “backing out”, and automated calibration



“Backing Out”

* Sometimes we can manually take several
aggregate pieces of data, and use them to

collectively figure out what more detailed data
might be

* Frequently this process involves imposing some
(sometimes quite strong) assumptions

— Combining data from different epidemiological
contexts (national data used for provincial study)

— Equilibrium assumptions (e.g. assumes stock is in
equilibrium. Cf deriving prevalence from incidence)

— Independence of factors (e.g. two different risk
factors convey independent risks)



Example

Suppose we seek to find out the sex-specific prevalence
of diabetes in some population

Suppose we know from published sources
— The breakdown of the population by sex (c,,, ¢;)
— The population-wide prevalence of diabetes (p;)

— The prevalence rate ratio of diabetes in women when
compared to men (rr;)

We can “back out” the sex-specific prevalence from
these aggregate data (p;, py)

Here we can do this “backing out” without imposing
assumptions



Backing Out

# male diabetics + # female diabetics = # diabetics
(Pm™ ) t (Pe™ cp) = pT*(C|\/|+CF)
* Further, we know that p. / py, =rr.=>p; = py, *

e Thus

(Pm™ cm)  + ((py ™ rre)™ ) = prT(cytce)
Py (Cy + P cp) = pr*(cytce)
* Thus

— P = Pr¥(eytce) / (cy + rre* cp)
— Pr =Py e =g p¥(eytey) /(e + et c)



Disadvantages of “Backing Out”

* Backing out often involves questionable
assumptions (independence, equilibrium, etc.)

* Sometimes a model is complex, with several
related known pieces

— Even thought we may know a lot of pieces of
information, it would be extremely complex (or
involve too many assumptions) to try to back out
several pieces simultaneously



Another Example: Joint & Marginal
Prevalence

Male
Female Per Pmu Pr

Pr Pu

Perhaps we know
*The count of people in each { Sex, Geographic } category
*The marginal prevalences (pg, Py, Py » Pe)

We need at least one more constraint

*One possibility: assume pyr / Py = Pr/ Py
We can then derive the prevalences in each { Sex, Geographic } category



Calibration: “Triangulating” from Diverse
Data Sources

* Calibration involves “tuning” values of less well
known parameters to best match observed data

— Often try to match against many time series or pieces of
data at once

— |dea is trying to get the software to answer the question:
“What must these (less known) parameters be in order
to explain all these different sources of data | see”

 Sometimes we learn from this that our model
structure just can’t produce the patterns!



Calibration

e Calibration helps us find a reasonable
(specifics for) “dynamic hypothesis” that
explains the observed data

— Not necessarily the truth, but probably a
reasonably good guess — at the least, a consistent
guess

* Calibration helps us leverage the large
amounts of diffuse information we may have
at our disposal, but which cannot be used to
directly parameterize the model

e Calibration helps us falsify models



Calibration: A Bit of the How

* Calibration uses a (global) optimization algorithm
to try to adjust unknown parameters so that it
automatically matches an arbitrarily large set of
data

 The data (often in the form of time series) forms
constraints on the calibration

* The optimization algorithm will run the model
many (minimally, thousands, typically 100K or
more) times to find the “best” match for all of
the data



Example Global Optimization
Algorithm

e Starts at random position, tries to improve match
(minimize error) by
— “Tweaking” parameters
— Running Model
— Recording error function

* Keeps on improving until reaches “local minimum”
in error of fit
— May add some randomness to knock out of local minima



Running Calibrations in Vensim:
(Under Model/Simulate Commands)
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Optimization Control

Optimization Contral.  Edit the filename to zave changes to a different contral file
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Payoff Definition

Faypoff Definition,  Edit the filename to gave changes to a different contral file
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Assessing Model “Goodness of Fit”

 To improve the “goodness of fit” of the model to

observed data, we need to provide some way of
qguantifying it!

 Within the model, we

— For each historic data, calculate discrepency of model

e Figure out absolute value of discrepency from comparing
— Historic Data

— The model’s calculations

* Convert the above to a fractional value (dividing by historic
data)

— Sum up these discrepency
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Required Information for Calibration

* Specification of what to match (and how much to
care about each attempted match)

”

— Involves an “error function” (“payoff function”, “penalty

/(]

function”, “energy function”) that specifies “how far off
we are” for a given run (how good the fit is)

* A statement of what parameters to vary, and over
what range to vary them

* Characteristics of desired tuning algorithm
— Single starting point of search?



Considerations

Adding constraints helps increase
identifiability (selection of realistic best fit)

Adding parameters to tune leads to larger
space to explore

Adding too many parameters to tune can lead
to underdetermined situation

All fits are within constraints of model



The Pieces of the Elephant
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Single Model Matches Many Data Sources
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Pieces of the Elephant: STI
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Incidence of Risk
Factors by Ethnicity
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