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Sources for Parameter Estimates 

• Surveillance data 

• Controlled trials 

• Outbreak data 

• Clinical reports data 

• Intervention  
outcomes studies 

• Calibration to historic 
data 

• Expert judgement 

• Systematic reviews 
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Introduction of Parameter Estimates 
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Sensitivity Analyses 

• Same relative or absolute uncertainty in 
different parameters may have hugely 
different effect on outcomes or decisions 

• Help identify parameters that strongly affect 
– Key model results 

– Choice between policies 

• We place more emphasis in parameter 
estimation into parameters exhibiting high 
sensitivity 

 



Dealing with Data Gradients 
• Often we don’t have reliable information on some 

parameters, but do have other data 
– Some parameters may not be observable, but some 

closely related observable data is available 

– Sometimes the data doesn’t have the detailed 
breakdown needed to specifically address one 
parameter 
• Available data could specify sum of a bunch of flows or stocks 

• Available data could specify some function of several 
quantities in the model (e.g. prevalence)  

• Some parameters may implicitly capture a large set 
of factors not explicitly represented in model 

• There are two big ways of dealing with this:  
manually “backing out”, and automated calibration 

 



“Backing Out” 

• Sometimes we can manually take several 
aggregate pieces of data, and use them to 
collectively figure out what more detailed data 
might be 

• Frequently this process involves imposing some 
(sometimes quite strong) assumptions 
– Combining data from different epidemiological 

contexts (national data used for provincial study) 

– Equilibrium assumptions (e.g. assumes stock is in 
equilibrium.  Cf deriving prevalence from incidence) 

– Independence of factors (e.g. two different risk 
factors convey independent risks) 

 



Example 

• Suppose we seek to find out the sex-specific prevalence 
of diabetes in some population 

• Suppose we know from published sources 
– The breakdown of the population by sex (cM, cF) 

– The population-wide prevalence of diabetes (pT) 

– The prevalence rate ratio of diabetes in women when 
compared to men (rrF) 

• We can “back out” the sex-specific prevalence from 
these aggregate data (pF, pM) 

• Here we can do this “backing out” without imposing 
assumptions 



Backing Out 

 # male diabetics + # female diabetics = # diabetics 

 (pM* cM)                  +        (pF* cF)            = pT*(cM+cF) 

• Further, we know that pF / pM =rrF => pF = pM * rrF 

• Thus 

 (pM* cM)     +   ((pM * rrF)* cF)            = pT*(cM+cF) 

 pM*(cM + rrF* cF) = pT*(cM+cF) 

• Thus 

– pM = pT*(cM+cF) / (cM + rrF* cF) 

– pF = pM * rrF = rrF * pT*(cM+cF) / (cM + rrF* cF) 



Disadvantages of “Backing Out” 

• Backing out often involves questionable 
assumptions (independence, equilibrium, etc.) 

• Sometimes a model is complex, with several 
related known pieces 

– Even thought we may know a lot of pieces of 
information, it would be extremely complex (or 
involve too many assumptions) to try to back out 
several pieces simultaneously 

 

 



Another Example: Joint & Marginal 
Prevalence 

Rural Urban 

Male pMR pMU pM 

Female pFR pMU pF 

pR pU 

Perhaps we know  
•The count of people in each { Sex, Geographic } category 
•The marginal prevalences (pR, pU , pM , pF) 

 
We need at least one more constraint  

•One possibility: assume pMR / pMU = pR / pU 
We can then derive the prevalences in each { Sex, Geographic } category 
 
  
 



Calibration: “Triangulating” from Diverse 
Data Sources 

• Calibration involves “tuning” values of less well 
known parameters to best match observed data 

– Often try to match against many time series or pieces of 
data at once 

– Idea is trying to get the software to answer the question:  
“What must these (less known) parameters be in order 
to explain all these different sources of data I see” 

• Sometimes we learn from this that our model 
structure just can’t produce the patterns! 

 



Calibration 
• Calibration helps us find a reasonable 

(specifics for)  “dynamic hypothesis” that 
explains the observed data 

– Not necessarily the truth, but probably a 
reasonably good guess – at the least, a consistent 
guess 

• Calibration helps us leverage the large 
amounts of diffuse information we may have 
at our disposal, but which cannot be used to 
directly parameterize the model 

• Calibration helps us falsify models 

 



Calibration: A Bit of the How 

• Calibration uses a (global) optimization algorithm 
to try to adjust unknown parameters so that it 
automatically matches an arbitrarily large set of 
data 

• The data (often in the form of time series) forms 
constraints on the calibration 

• The optimization algorithm will run the model 
many (minimally, thousands, typically 100K or 
more) times to find the “best” match for all of 
the data 

 



Example Global Optimization 
Algorithm 

• Starts at random position, tries to improve match 
(minimize error) by  

– “Tweaking” parameters 

– Running Model 

– Recording error function 

• Keeps on improving until reaches “local minimum” 
in error of fit  

– May add some randomness to knock out of local minima 

 

 



Running Calibrations in Vensim:  
(Under Model/Simulate Commands) 

 



Optimization Control 

 



Payoff Definition 

 



Assessing Model “Goodness of Fit” 

• To improve the “goodness of fit” of the model to 
observed data, we need to provide some way of 
quantifying it! 

• Within the model, we  

– For each historic data, calculate discrepency of model 

• Figure out absolute value of discrepency from comparing 

– Historic Data 

– The model’s calculations 

• Convert the above to a fractional value (dividing by historic 
data) 

– Sum up these discrepency 



 



Required Information for Calibration 

• Specification of what to match (and how much to 
care about each attempted match) 

– Involves an “error function” (“payoff function”, “penalty 
function”, “energy function”) that specifies “how far off 
we are” for a given run (how good the fit is) 

• A statement of what parameters to vary, and over 
what range to vary them 

• Characteristics of desired tuning algorithm  

– Single starting point of search? 

 



Considerations 

• Adding constraints helps increase 
identifiability (selection of realistic best fit) 

• Adding parameters to tune leads to larger 
space to explore 

• Adding too many parameters to tune can lead 
to underdetermined situation 

• All fits are within constraints of model 

 



The Pieces of the Elephant 
Example Model of Underlying Process & 

Time Series It Must Match  
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Single Model Matches Many Data Sources 

 

one of  



Slides Adapted from External Source  
Redacted from Public PDF for Copyright 

Reasons 



Pieces of the Elephant: STI 
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